
 

1 

Hardware and Software Laboratory Project 3 (Hardware) 
SIMPLE Design Resources 

Ver. 4.0: 04/15/2020 

1 Introduction 

This document is related to computer hardware design that is an assignment for Hardware 
and Software Laboratory Project 3. The computer that will be designed, SIMPLE (SIxteen-
bit MicroProcessor for Laboratory Experiment), treats one word as 16 bits and has a 
relatively simple instruction set, but it is equipped with all of the basic functionalities that a 
computer should have. Consequently, correctly designing SIMPLE is an important first step 
towards designing more advanced computers. 

In Chapter 2, this document details SIMPLE’s basic architecture, that is to say, what kinds 
of register and memory it has as well as what kinds of formats and functions the instructions 
to be executed have. Following this, in Chapter 3 this document gives a small glimpse into 
the simplest way to design a machine based upon this architecture. 

It is worth noting that students will not merely be following the design specifications and 
roadmap provided for them; rather, this assignment also necessitates that students apply 
original improvements and extensions while evaluating and considering their effectiveness. 
As a helpful reference, potential improvements and extensions to the instruction set 
architecture and the microarchitecture are included in Chapter 4.1. 

2 SIMPLE’s Architecture 

A computer’s architecture refers to a defined list of the various resources that it has access 
to, such as registers and memory, as well as the functions of the instructions that operate 
them. Fundamentally, architectures determine the logical structure and functions, they do 
not define how these things are actually implemented. As such, it is common practice to 
design various hardware based on a single architecture. However, no matter how it is 
designed, the crucial point is that the programs must behave in exactly the same manner. 
Architectures related to details of hardware designs are referred to as microarchitectures. 

2.1 Main memory and register 

SIMPLE is a computer that uses 16 bits for one word. Its main memory and register are 
both 16 bits wide. 

 Main memory 

Main memory addresses are 16 bits and each word is addressable. As such, address 

space size is 64 KW. Henceforth, accessing a word with address a will be denoted 

via *(a) (like in the C language). 

 Register 

SIMPLE is equipped with eight general purpose registers denoted as r[0], r[1],..., r[7]. 

These are used for calculations related to operation sources/destinations as well as 

main memory addresses. 

 Program counter 

Retains the address of instructions currently being executed. Denoted as PC. 
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Figure 1: SIMPLE’s Instruction Formats 

 Condition codes 

It consists of the four flags that retain the branching conditions for the result of 

operation instructions, S (sign), Z (zero), C (carry), and V (overflow), and they are 

configured as shown below. 

S: 1 if negative, 0 otherwise 

Z: 1 if zero, 0 otherwise 

C: 1 if there is a carry, 0 otherwise 

V: 1 if the operation result exceeds that which can be represented as a signed 16 

bit, 0 otherwise 

It is worth noting that the explanation about the C value except for addition, 

subtraction, and comparison instructions is described later. 

2.2 Instruction set architecture 

Instruction format 

SIMPLE’s instructions are always fixed to one word (16 bits) in length. The four types of 
instruction formats can be seen in Figure 1. The meaning of each instruction format and 
field is as follows. 

(a) Operation/input-output instruction format 

 I15:14 (op1).....Operation code (11) (opcode) 

 I13:11 (Rs).......Source register number 

 I10:8 (Rd)........Destination register number 

 I7:4 (op3)........Operation code (0000 to 1111) 

 I3:0 (d)............Shift number of digits  

(a) Operation/input-output instruction format 

(b) Load/store instruction format 

(c) Load immediate/unconditional branch instruction format 

(d) Conditional branch instruction format 
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(b) Load/store instruction format 

 I15:14 (op1).....Operation code (00/01) 

 I13:11 (Ra)......Source/destination register number 

 I10:8 (Rb).......Base register number 

 I7:0 (d)............Displacement 

(c) Load immediate/unconditional branch instruction format 

 I15:14 (op1)......Operation code (10) 

 I13:11 (op2)......Operation code (000 to 110) 

 I10:8 (Rb).........Source/destination/base register number 

 I7:0 (d).............Immediate or displacement 

(d) Conditional branch instruction format 

 I15:14 (op1)......Operation code (10) 

 I13:11 (op2)......Operation code (111) 

 I10:8 (cond)......Branch condition 

 I7:0 (d)..............Displacement 

 

Operations/Input-output instructions 
SIMPLE’s operations/input-output instructions are shown in Table 1. For operation 
instructions, condition codes based on the result are configured. 

1. Arithmetic operations 

Results of addition (ADD:add) and subtraction (SUB:subtract) for registers Rd and Rs 

are stored in Rd and condition codes are configured. For condition code C, the carry 

is configured from the most significant bit. 

2. Logical operations 

Results of bit-wise logical product (AND:and), bit-wise logical sum (OR:or), or 

exclusive logical sum (XOR:exclusive-or) for registers Rd and Rs are stored in Rd and 

condition codes are configured. However, condition code C will be 0 regardless of the 

result of the operation. 

3. Comparison operations (CMP:compare) 

Register Rs is subtracted from register Rd, and condition codes are only configured 

based on the result. For condition code C, the carry is configured from the most 

significant bit. 

4. Movement operations (MOV:move) 

Simply stores the value of register Rs in register Rd, creating condition codes based 

on the value of Rd. However, condition code C will be 0 regardless of the value of Rs. 

5. Shift operations 

The value of register Rd is shifted in the manner shown below and stored in Rd. 

Condition codes are configured. 

 SLL (shift left logical)........ After shifting left, a 0 is put into the empty spot. 
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 SLR (shift left rotate)......... After shifting left, the bit column that was shifted out 

is put into the empty spot. 

 SRL (shift right logical)....... After shifting right, a 0 is put into the empty spot. 

 SRA (shift right arithmetic)... After shifting right, the value of the signed bit is put 

into the empty spot. 

The number of digits shifted is immediate d (0 to 15). Condition code C is 0 both for 
SLR and when the number of digits shifted is 0. However, in all other cases it is set to 
the value of the last bit that was shifted out. Condition code V is always set to 0. 

6. Input-output instruction 

 IN (input).......... Stores a value input via a switch or some other device into 

register Rd. 

 OUT (output).... Outputs the value of register Rs to 7SEG LED or some other 

device. 

 HLT (halt)......... Halts SIMPLE. 

 
Instructions denoted as “(reserved)” will not do anything aside from moving on to the next 
instruction.1 

Table 1: SIMPLE’s Operations/Input-Output Instructions 

 
  

 
1 In accordance with the policy “we cannot guarantee the behavior of undefined instructions,” it is okay for one to make 
these into don’t-care terms. 
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Load/store instruction 

The functions of SIMPLE’s load instruction (LD:load) and store instruction (ST:store) are 
shown in Table 2. The source/destination is register Ra designated in field Ra. The effective 
address is found by adding register Rb designated in field Rb by designation of the base 
register address and sign_ext(d), which is the code extension of field d. 

Table 2: SIMPLE’s Load/Store Instructions 

 
 

Load immediate/unconditional branch instructions 

The functions of SIMPLE’s load immediate instruction (LI:load immediate) and unconditional 
branch instruction (B:branch) are shown in Table 3. 

 LI......Stores immediate sign_ext(d) in register Rb. 

 B.......Takes the code-extended value of d as the displacement and branches by 

designating the PC relative address. 

Table 3: SIMPLE’s Load Immediate/Unconditional Branching Instructions 

 
Conditional branch instruction 

As shown in Table 4 below, SIMPLE’s conditional branching instruction branches according 
to the PC relative address if the branching condition in field cond is TRUE. If the condition is 
FALSE, it simply moves to the next instruction. The branching condition for each instruction 
is detailed below. 

 BE (branch on equal-to).................... Condition code Z is 1 

 BLT (branch on less-than)................. .XOR (S ^ V) of condition codes S and V is 1 

 BLE (branch on less-than or equal-to)... Z or (S ^ V) is 1 

 BNE (branch on not-equal-to)............... Condition code Z is 0 

(Conditional branch 
instruction) Refer to Table 4. 
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Table 4: SIMPLE’s Conditional Branching Instructions 

 

3 Basic Design 

As stated previously, it is possible to design various differing hardware based upon a single 
architecture. In this chapter, we will present the SIMPLE/B hardware, in which the SIMPLE 
CPU is divided into five phases, as a basic design example. It is worth noting that there are 
multiple places where the hardware presented can be improved, so it is greatly expected 
that students will make their own original design improvements after some thorough study 
without relying too heavily on the SIMPLE/B design. 

As shown in Figure 2, SIMPLE/B is configured with five phases (p1 to p5) that are activated 
in order and an input-output device consisting of a controlling circuit that supplies a control 
signal for each phase, a main memory and a switch/LED/7SEG LED. The thick lines in the 
figure denote busses or selectors. 

3.1 Controlling circuit 

In SIMPLE/B, the signal detailed below is supplied externally. 

1. clock 

System clock. Supplies the clock where Hi/Lo times are as close to 1:1 as possible by 

using an appropriate oscillation circuit. As shown in Figure 3, the controlling circuit 

activates each phase in order one by one in sync with the rising edge of the clock. 

Therefore, the period of the clock is fixed by the delay time of the phase where the 

delay time is the largest. In many cases, this is the value found by adding the delay 

time, etc. of the peripheral circuits to the memory access time. 
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Figure 2: Block Diagram of SIMPLE/B 

2. reset 

Reset signal. Uses a push switch to supply 1 when pressed and 0 when released2. It is 

desirable to have it so that it supplies 1 when powering up. When reset becomes 1, 

SIMPLE/B clears the PC, etc. and transitions to a suitable initial state. 

3. exec 

Start/Stop signal. Uses a push switch to supply 1 when pressed and 0 when released2. 

When SIMPLE/B is in a stop state and exec changes from 0 to 1, SIMPLE/B will begin 

executing instructions. When SIMPLE/B is running and exec changes from 0 to 1, it 

will complete the instruction currently being executed and cease activity. 

  

 
2 [reset] and [exec] can both be made with negative logic. 
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Figure 3: SIMPLE/B’s Phases 

3.2 Phases p1 to p5 

SIMPLE/B executes a single instruction while activating five phases (p1 to p5) in sequence. 

1. p1 (instruction fetch) 

Fetches the instruction of the address retained in the PC (program counter) from the 
main memory and stores it in the IR (instruction register), while adding 1 to the PC. 

2. p2 (register readout) 

Reads the values of the general purpose register specified in the Ra/Rs field and 
Rb/Rd field of the instruction retained in the IR, storing them in registers AR and BR. 

3. p3 (operation) 

The ALU or shift circuit performs the operation determined by the instruction (including 
address calculations and simple data transfer) and stores the result in register DR 
(data register). Condition codes S, Z, and C are set during operation instructions. 
There are times when AR and BR, as well as the PC and the instruction’s immediate 
are used as the operation source. 

4. p4 (main memory access) 

For load/store instructions, the value of DR is taken as an address and used to access 
the main memory. For load instructions, the read value is stored in register MDR 
(memory data register), and for store instructions the value retained by AR is written. 
Also, for input-output instructions, the value of the input switch is stored in MDR, and 
the value of AR is displayed to the 7SEG LED. 

5. p5 (register writing) 

For instructions that require writing to a general purpose register, the value of DR or 
MDR is written to the general purpose register specified in the instruction’s Ra, Rb, or 
Rs field. Also, for branching instructions, the value of DR is written to the PC as the 
branch destination address. 

3.3 Main memory and input-output device 

The capacity of the main memory will be made to be 64 KW, the same amount as SIMPLE’s 
address space. Also, address conversions will not be performed; addresses determined by 
instructions will be used as main memory addresses without any changes being made. This 
main memory will be configured in the RAM loaded on the FPGA. However, due to the type 
of FPGA used in implementing SIMPLE, it is possible that size restrictions on the RAM 
loaded on the FPGA will render the main memory unable to hold 64 KW. (For a CycloneIV 
EP4CE30 on a PowerMedusa MU500-RX board, 33 KW is the maximum value.) 

The RAM loaded onto the FPGA works in sync with a clock. Addresses for writing to and 
reading from the main memory are designated by selecting the value of the PC or DR and 
outputting it to the address bus. Data read from the main memory is output to the data bus 
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from the main memory if the clock signal is input. For this, IR or MDR can be brought in as 
necessary. Data to be written to the main memory is output from AR to the data bus. If the 
write enable signal is 1 when the clock signal is input, the data is written to the main 
memory. 

Each student can choose their own preferred input-output interfaces that will deal with IN 
instructions and OUT instructions. The following input-output interfaces exist for the 
PowerMedusa MU500-RX/RK/7SEG boards. 

• Input 

– Push switches: 20 

– Rotary switches: 2 

– 8-bit DIP switches: 2 

• Output 

– LED: 8 + 64 

– 7SEG LED: 8 + 64 

– Buzzers: 1 

 
These can be used not only for input-output instructions, but also to monitor and control the 
internal state of the processor as well. For the switches, on top of the aforementioned reset 
and exec signals, one should also assign a control signal to use for debugging. Display 
systems should show bus and register values as well as their value history. The use of 
rotary switches is also one way to change what is displayed. 

 

4 Original Improvements and Extensions 

The basic architecture of SIMPLE laid out in Chapter 2 was intentionally made to be an 
extremely simple way of constructing a functioning processor. On that note, this section will 
provide some hints for the assignment of improvements and extensions for that architecture. 

 

4.1 Improving the instruction set architecture 
This section contains some hints for how to go about extending the instruction set 
architecture below. 

1. Enhancing the immediate operand 

2. Enhancing input-output instructions 

3. Adding “branch register” and “branch and link” instructions 

4. Consolidating conditional branching into one instruction 

5. Support for interrupts via board input 

6. Adding complex operation instructions 

7. Adding conditional operation instructions 
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The architecture shown here is merely an example. Students are free to make original 
modifications, and are even encouraged to do so. Also, when making large-scale 
extensions to the basic instruction set, it is possible to encounter a situation where there are 
not enough bits. In such cases, it is permitted for students to remove some instructions from 
the basic instruction set to incorporate these extensions. 

 

4.1.1 Enhancing the immediate operand 

In the basic architecture, the operands of operation instructions are all general purpose 
registers. For example, to add 1 to register r[0], it would require two instructions as shown 
below. 

LI R1,1 

ADD R0, R1 

As such, one might consider an extension for the operation instructions in Table 1 (aside 
from the shifts that do not use the d field) that makes them operate on the immediate 
designated in register Rd and the d field. 

Some hints are listed below. 

• You will need to extend the instruction set while taking into account the conversion 

between r[Rd] + r[Rs] and r[Rd] + sign_ext(d). (perhaps using 1 bit within d as a flag) 

• Of course, upon adding a functional unit, a possible means of extension would be to 

make it perform the operation r[Rd] + r[Rs] + sign_ext(d). 

 

4.1.2 Enhancing input-output instructions 

In the basic architecture, there are IN instructions in the form of input from the board as well 
as OUT instructions in the form of output to the board. In the basic architecture, the input 
and output target of these instructions is fixed to a specific 16-bit input/output. However, the 
PowerMedusa EC6S board has the input and output targets with 16 bits or more, and it is 
better for program creators to be able to select and use input/output among these targets. 
Therefore, one could consider an extension that makes use of the unused fields Rs and d in 
IN instructions and fields Rd and d in OUT instructions to change the input/output 
destination by using those fields. 

Some hints are listed below. 

• The 8-digit 7SEG LED can display data in data of 32 bits. You can use one bit in the 

field to switch between higher order and lower order for the 8-digit 7SEG LED. 

• If all of the output of the 7SEG board is to be used, one will need at least a 5-bit field 

to select eight 8-digit 7SEG LEDs and 64 LEDs. To do so, one will need to use both 

the Rd and d fields. 

• The register file can read two register values at the same time, so it might be 

interesting to extend it so that one can output two register values with a single OUT 

instruction. 
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4.1.3 Adding “branch register” and “branch and link” instructions 

When a function is called, most compilers will output code that performs the following 

actions. 

1. Stores the next PC after the instruction that called the function to the register and 

jumps to the beginning of the function. 

2.  Executes the function. 

3.  Writes the value stored to the register in Step 1 to the PC and begins execution from 

the next instruction following the one that called the function. 
 

As seen above, the reason that the return address is stored to the register is that the line of 
code that calls the function might not be the only line that does so. 

In order to support function calls, normal processors have what is known as branch and link 
(BAL) instructions to carry out the purpose of Step 1, and branch register (BR) instructions 
to carry out the purpose of Step 3. If one were to extend the architecture to implement these 
instructions, they would be able to implement functions that can be called from any location. 
These are instructions that must be implemented for practical programming on the 
processor. 

Some hints are listed below. 

 A new data path will be necessary to save the PC to the register. 

 There are ways to implement this in which the register to which the BAL saves the 

PC as well as the register that the BR reads from can be freely specified. Conversely, 

there are implementations of this where these registers are fixed. For what it’s worth, 

the MIPS architecture restricts the register to which the BAL equivalent saves the PC 

to register 31. It can be an interesting exercise to consider the pros and cons of fixing 

the register in this manner. 

 When writing programs in which the called function calls yet another function, it is 

necessary to save the content of the resister storing the return location from the 

current function to the main memory, etc. before calling the second function. Other 

register values will also need to be saved to the main memory, etc. as necessary. 

(For details, refer to compiler experiments.) 

 For situations like the aforementioned layered function calls, it might be interesting to 

consider ways to speed up the function calls/returns in cases where they are not in 

such deep layers. For example, one might consider decreasing the amount needing 

to be saved to the main memory by adding the stack that saves the return addresses 

and the registers to the processor. 

 

4.1.4 Consolidating conditional branching into one instruction 

In the basic architecture, conditional branching makes use of the condition codes set by the 
result of operations. With this configuration, it is possible to expand the potential scope of 
the branching by enlarging the d field of the instruction’s bit stream shown in Table 4. 
However, with this configuration, one fundamentally needs to execute a comparison 
instruction before carrying out the conditional branch. This makes one consider the potential 
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of performing the comparison and branching in a single instruction. Naturally, one must 
provide space in the instruction’s bit stream for the part that specifies the two registers being 
compared. As such, this decreases the number of bits available to be used for the d field. 
As a result, the potential scope of the branching is decreased, but this is not a problem if 
one leaves the conditional branching instruction from the basic architecture. 

Some hints are listed below. 

 As seen in the format in Table 4, there are not enough bits to specify two registers. 

One can make use of the “(reserved)” sections found in Table 3. 

 The basic architecture is a proper architecture with a lot of deep thought and 

planning. If one writes programs in a certain manner, it is possible to implement 

conditional branching without the use of comparison instructions. It might be 

interesting to consider things along that line of thought. 

 Table 4 also contains “(reserved)” sections. One can use these to increase the 

branching conditions for conditional branching instructions. 

 

4.1.5 Support for interrupts via board input 

The basic architecture does not have support for processing interrupts from board input. It 
cannot do anything like “executing a specific routine when a certain button on the board is 
pressed”3. As such, one might consider a potential extension that enables interrupting 
according to board input. The board input can be used to trigger specific tasks to be 
processed. 

Fundamentally, when interrupting occurs, it follows the pattern of: “suspension of current 
processing” → “execution of interruption processing” → “resuming of previous processing.” 

1. Completes the instruction currently being executed, updates the register values and 

condition codes, and decides the PC of the next instruction to be executed. 

2. Saves the condition codes, PC value, and all of the values in the register file to the 

memory. 

3. Feeds the first memory address of the instruction line of the interruption processing 

to the PC. 

4.  Reads the instructions according to the PC and performs the interruption processing. 

5. Writes back the register values, condition codes, and PC value saved in Step 2 once 

the interruption processing is finished. 

6. Reads instructions according to the PC value, continuing the execution of the 

processing that was occurring in Step 1. 

Some hints are listed below. 

 Fundamentally, the call/return processing required for interrupting can be thought of 

as a superset of the function call/return processing. Thus, one should first implement 

BAL and BR instructions. 

 
3 It is not necessarily impossible to implement this with IN instructions only, but these instructions can only read values in 
the moment they are executed, so the IN instruction would need to be executed while the button is being pressed. 
Consequently, one would need step-by-step execution of these IN instructions or a loop that continuously monitors input, 
so they would be exceedingly difficult to use. 
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 The processing for saving/returning of the registers, condition codes, and PC can be 

implemented through the hardware, but one can simplify the hardware by simply 

implementing this as a part of the interruption processing. 

 The first memory address of the instruction line of the interruption processing can be 

fixed, but if one makes it so that it can be specified in a register, then one will be able 

to switch between a few processes for interrupts. 
– The register that specifies this address can be part of a general purpose register, or 

one can arrange for a dedicated register. 
– If one goes for the dedicated register route, then it will be necessary to have 

dedicated instructions to operate this register. 

 Implementation would be easier with a PC, register file, and condition codes to use 

specifically for interrupts along with the ability to switch back and forth upon 

start/finish of interruption processing. However, this would certainly increase 

hardware costs. 

 It would be good to be able to support multiple interrupt signals instead of just one. 

Of course, in this case, one would need to prepare multiple interruption processes 

and have the ability to select between them based on the signal. 

 It would be good to also implement instructions that initiate interruptions. This can 

double as a way to test the ability to process interrupts. 

 Most normal processor designs treat interrupt processing instructions in the same 

manner as input-output instructions; they are considered privileged instructions and 

cannot be executed by normal programs. However, considering the relatively small 

intended scope of SIMPLE, there is not a need to go out of one’s way to implement 

such functionality. 

 Implementing timer interrupts would be interesting as it would allow for one to write 

programs that process in real time. However, the PowerMedusa EC6S board does 

not have a timer, so one can assume a fixed clock frequency and initiate timer 

interrupts from the clock number. 

 

4.1.6 Adding complex instructions 

Many processors that specialize in processing sounds and images (digital signal processors, 
etc.) are equipped with instructions that can perform multiple operations with a single 
instruction. This enables them to process sounds and images more efficiently. An example 
of such an instruction is the multiply accumulate (MAC:Multiply ACcumulate) instruction 
below. 

r[c] = r[c] + r[a] * r[b] 

When programs were written in assembly, in cases where the instruction lines below 
appeared frequently, it would be interesting to have an extension that introduces an 
instruction that accomplishes the same behavior as r[c] = r[c] op2 (r[a] op1 r[b]). (op1 and 
op2 denote operations.) 

op1 r[a], r[b] 

op2 r[c], r[a] 

Some hints are listed below. 
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 The number of register values that will have to be read upon execution will increase, 

so one will either need to increase the number of read ports for register files or 

perform the readings across multiple cycles. 

 One can come up with configurations that use multiple functional units and that 

utilize multi-cycle execution to use only a single functional unit. 

 The implementation of intricate complex instructions can cause the frequency of the 

system clock to sharply decrease due to the circuits becoming more complicated. 

Also, in many cases one is unable to attain performance improvements that 

counterbalance the extensions made to the hardware. Thoroughly considering these 

factors can be very interesting. 

 If time allows, one can try implementing both types of configurations; implementing 

multiple functional units and performing multi-cycle execution and then compare the 

two. 
 

4.1.7 Adding conditional operation instructions 

Certain processors exist that are equipped with conditional execution instructions whose 
execution is contingent on the status of some condition code. Such instructions are useful 
for cutting down on pipeline bubbles caused by branching in pipelined processors (omitting 
a detailed explanation for the sake of brevity). SIMPLE/B is not pipelined, so there is no 
particular significance in adding conditionally executed instructions. However, based on the 
same line of thinking, one might consider implementing instructions in which the operation 
performed changes based upon the status of a condition code. 

To help explain this, let us examine an example. Suppose that a program contains an if-else 
statement in which the if portion adds variables A and B, and the else portion subtracts A 
and B. If instructions are implemented that will perform addition if the condition code is the 
same as the if portion’s condition and subtract when it is not, then this drastically reduces 
the number of instructions required to express this if-else statement. If we have programs 
like the one detailed above, then adding these conditional operation instructions becomes 
extremely intriguing. 

Some hints are listed below. 

 These instructions will be even more limited in their potential uses than the complex 

instructions described in Section 4.1.6. One should probably brainstorm other 

programs that they could be useful for so that one does not implement instructions 

that can only be used in one program. 

 In their report, students should demonstrate the application examples of these 

instructions for multiple programs and explain their usefulness. 

 It would also be intriguing to discuss in one’s report just how much one can benefit 

from pipelined processors that have conditional execution. 

4.2 Improving the microarchitecture 

4.2.1 Parallel execution of phases 

One possible way to improve upon SIMPLE/B would be to shorten the instruction cycle by 
executing phases in parallel. 

1. p1/p5 parallel execution (Fig. 4 (a)) 
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The instruction cycle becomes a 4-step cycle. This can be implemented quite easily 
with a little bit of tinkering with the process that handles setting the branch destination 
address in the PC. 

2. p1/p3 and p2/p5 parallel execution (Fig. 4 (b)) 
The instruction cycle becomes a 3-step cycle. 

It takes a lot of tinkering with the branch instruction execution to be able to always 
execute p1/p3 in parallel (hint: do not use p3 for the branch address calculation). As 
an alternative method, one might consider simply not using parallel execution for 
branching instructions. 

In order to execute p2/p5 in parallel, one must take steps to deal with situations in 
which an instruction that references a general purpose register is encountered 
immediately after an instruction that updates the same register. 

3. p1/p3/p5 and p2/p4 parallel execution (Fig. 4 (c)) 
The instruction cycle becomes a 2-step cycle. One will need to do some further 
tinkering to the data reliance solution devised in Step 2. 

4. p1/p2/p3/p4/p5 parallel execution (Fig. 4 (d)) 

The instruction cycle becomes a 1-step cycle, referred to as pipelining. Implementing 

this would be very difficult, but it is worth giving it a shot due to the fact that many 

processors used these days are pipelined. 

 

Figure 4: Parallel Execution of Phases 

 

4.2.2 Parallel execution of instructions (superscalar execution) 

Current processors for PCs detect sets of instructions that can be executed in parallel 
among instructions in the program and execute them in parallel. This is called superscalar 
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execution, and processors that can do this are called superscalar processors. Current 
processors for PCs combine superscalar execution and out-of-order execution (execution 
that makes it possible to execute instructions in order different from the program order), but 
implementing this configuration would naturally require hardware of a much larger scale. As 
such, if one wishes to implement superscalar execution, it would be better to combine it with 
in-order execution (in which instructions are only executed in the program order). This 
combination of superscalar execution and in-order execution is even used in Intel’s initial 
Pentium series. 

When combining superscalar execution and in-order execution, the processor reads 
consecutive instructions on the program all at once from the main memory and executes 
them in parallel so long as the instructions have no data interdependencies (in which the 
execution result of an instruction is used by a different instruction). The probability of three 
or more consecutive instructions on the program having no data interdependencies is quite 
low, thus most processors that combine in-order execution with superscalar execution limit 
the number of instructions executed in parallel to two. Some hints regarding two-instruction 
parallel execution are shared below. 

• Reading the main memory for multiple instructions generally is performed by making 
the unit of reads from the main memory larger than the bit length of the instructions 
and then extracting the individual instructions from the read data. However, if one uses 
multi-port RAM to add support for parallel execution of load instructions (discussed 
later), multiple instruction addresses can be sent to the RAM to read multiple 
instructions. 

• Whether or not parallel execution of multiple instructions is possible depends on p2 or 
equivalent. Specifically, so long as the first instruction’s Rd (Ra, Rb) and the second 
instruction’s Rb, Rs, Rb, Ra do not coincide, parallel execution is possible. If it is 
determined at this point that parallel execution is not possible, only the first instruction 
will be sent to p3. As for the second instruction, one might consider an approach 
where it is discarded and then re-read by the main memory or where it is stored in the 
registers and only one instruction is read at the next reading of instructions. 

• In order to execute two instructions in parallel, the register file will have a 4 read/2 

write configuration. 

• When executing two instructions in parallel, the condition code will be updated in p3 by 

the second instruction. 

• In order to perform p4’s main memory access in parallel, the main memory should be 

composed of multi-port RAM. However, the FPGA used in this experiment is prepared 

with only up to 2 read/1 write RAM, so it cannot execute stores in parallel. One can 

include the judgment as to whether two instructions to be executed in parallel are both 

store instructions in the parallel execution judgment made in p2. 

5 Related Materials 

-  Experiment webpage: http://www.lab3.kuis.kyoto-u.ac.jp/~takase/le3a/This page 

contains detailed materials on the experiments. Also, various announcements are 

posted there. 

  

http://www.lab3.kuis.kyoto-u.ac.jp/~takase/le3a/
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Appendix A: Instruction Set for the Basic Architecture 

 

(Conditional branch 
instruction) 


